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A formula, applicable to invertible maps of arbitrary dimensionality, is derived for the information dimen-
sions of the natural measures of a nonattracting chaotic set and of its stable and unstable manifolds. The result
gives these dimensions in terms of the Lyapunov exponents and the decay time of the associated chaotic
transient. As an example, the formula is applied to the physically interesting situation of filtering of data from
chaotic systems.@S1063-651X~96!11811-0#
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I. INTRODUCTION

Kaplan and Yorke@1# conjectured a formula relating the
fractal dimension of a chaotic attractor of a typical@2#
N-dimensional dynamical system to the Lyapunov exponents
of the attractor. More precisely, the formula gives the infor-
mation dimension of the natural measure on the attractor~the
natural measure is informally defined in Sec. II!. Although
the conjecture is still unproved in its most general form,
some relevant rigorous results have been obtained. For the
case of a two-dimensional invertible map (N52), Young@3#
proved that the information dimension of an ergodic invari-
ant measurem is

D~m!5~h1
212h2

21!H, ~1!

whereH is the metric entropy ofm andh1>0>h2 are the
Lyapunov exponents for the measurem. The invariant set in
this case may or may not be an attractor. In the case where
m is the natural measure of an attractor, it is reasonable to
assume thatH5h1 ~this can be proved for hyperbolic attrac-
tors!, and Eq.~1! then agrees with theN52 version of the
Kaplan-Yorke formula. In@4# it was shown that the Kaplan-
Yorke formula provides a rigorous upper bound for the di-
mension of a chaotic attractor of anN-dimensional map~the
question of whether the upper bound is actually attained re-
mains open!. Reference@5# uses a notion of ‘‘partial dimen-
sions’’ to relate the Lyapunov exponents and entropy of an
invariant measurem ~again not necessarily attracting! for
generalN to its dimension@as in ~1! for N52#. Reference
@6# proves the Kaplan-Yorke conjecture forN-dimensional
iterated function systems. ~In contrast to a dynamical system,
in an iterated function system, at each iterate, the map to be
applied is drawn at random from a prespecified ensemble.!

In addition to attractors, nonattracting invariant sets are
also of interest in a variety of situations. In particular, non-
attracting invariant sets are responsible for such physical
phenomena as fractal basin boundaries, chaotic transients,
and chaotic scattering. Thus the dimensions of the natural
measures of these sets and of their stable and unstable mani-
folds have attracted attention. In the caseN52 Refs.@7,8#
use heuristic arguments to relate these dimensions to the
Lyapunov exponentsh1.0.h2 and the characteristic decay
time t of the associated chaotic transient. The results of
Refs.@7,8# correspond to~1! with H5h12(1/t). Motivated

by the consideration of the problem of chaotic scattering, the
case of generalN was treated in@9#, but was restricted to
consideration of Hamiltonian systems.

The purpose of this paper is to present a heuristic deriva-
tion of a formula for the dimensions of the natural measures
of a general invariant set and its stable and unstable mani-
folds. In the case where the set is an attractor, the Kaplan-
Yorke formula is recovered. In the case where the set is
nonattracting, theN52 results of Refs.@7,8# and the general
N-dimensional Hamiltonian results of@9# are recovered. The
present formula also covers situations of typical nonattract-
ing sets not covered by previous results, and these previously
untreated cases have relevance to physical situations. We
discuss one such physical example in Sec. II, acausal filter-
ing of signals from chaotic systems@10#. Another example
~not discussed here! is the convection through a ‘‘scattering
region’’ of passive tracers by a three-dimensional time-
dependent incompressible fluid flow@11#.

II. DIMENSION FORMULAS

We consider a chaotic invariant ergodic set of an
N-dimensional invertible smooth map@12#. Imagine that we
enclose the invariant set by anN-dimensional cube and that
we sprinkle a very large numbern(0) of initial conditions
uniformly throughout the cube. We now iterate each initial
condition forward in time. If an initial condition leaves the
cube we regard it as ‘‘lost’’ and no longer follow it. Let
n(t), t.0, denote the number of initial conditions that have
not yet been lost at timet. Then we define the forward ex-
ponential decay timet as

1/t5 lim
t→1`

lim
n~0!→`

t21ln@n~ t !/n~0!#. ~2!

If we examine the location of then(t) orbit points in the
cube at large positive timet, they will be in the close vicinity
of the unstable manifold of the invariant set. Thus we define
a natural measurem1 for the unstable manifold such that the
measurem1(C) of a small volumeC within the cube is

m1~C!5 lim
t→1`

lim
n~0!→`

n1~ t,C!/n~ t !, ~3!
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wheren1(t,C) is the number of then(t) orbit points in the
cube at timet that are also inC. We can also define a natural
measure for the stable manifold by

m2~C!5 lim
t→1`

lim
n~0!→`

n2~ t,C!/n~ t !, ~4!

wheren2(t,C) is the number of initial conditions inC that
do not leave the cube before timet. To define the natural
measure on the invariant set itself, we consider then(t) or-
bits that do not leave the cube before timet and ask where
they were located at some intermediate timejt, where
0,j,1 ~e.g., we might takej51/2). Lettingn0(j,t,C) de-
note the number of these orbits that are inC at timejt, we
define the natural measure on the invariant set as

m0~C!5 lim
t→1`

lim
n~0!→`

n0~j,t,C!/n~ t !, 0,j,1. ~5!

@Note that with this notationn1(t,C)5n0(1,t,C) and
n2(t,C)5n0(0,t,C).# The natural measure of the invariant
set will haveN associated Lyapunov exponents that charac-
terize the stretching or compression of differential volumes
following orbits generated by those initial conditions
sprinkled in the cube that do not leave for a large number of
forward iterates. LetU ~for unstable! denote the number of
positive Lyapunov exponents and letS ~for stable! denote the
number of nonpositive exponents; thenU1S5N. We label
the exponents as

hU
~1 !>hU21

~1 ! >•••>h1
~1 !.0>2h1

~2 !>2h2
~2 !

>•••>2hS
~2 ! , ~6!

where we have arranged the exponents in decreasing order,
starting with the largest positive exponent on the left and
ending with the most negative exponent on the right. Note
that in this notationhj

(1,2) are all non-negative and that
smaller values of the subscriptsj correspond to values of
hj
(1,2) closer to zero.
Making the simplifying assumption that the invariant set

is hyperbolic, it is appropriate to conceptualize the edges of
the enclosing cube as parallel to directions of stretching and
compression by the Lyapunov exponentshj

(1) and2hi
(2) .

We also suppose that, by suitable normalizations, we can
take the cube edges to be of unit length. Iteration of the
sprinkled points forward in time then results in a distribution
restricted to slabs within the cube, where these slabs have
dimensions

1313•••313e2h1
~2 !t3e2h2

~2 !t3•••3e2hS
~2 !t ~7!

and there areU slab edge dimensions of unit length. Let
N(t) denote the number of these slabs. For larget we write

N~ t !;eHt,

where we callH the forward entropy. Mapping theseN(t)
slabs backwardt iterates, we obtainN(t) slabs of initial
conditions each of dimension,

e2hU
~1 !t3e2hU21

~1 ! t3•••3e2h1
~1 !t313•••31, ~8!

where there areS slab edge dimensions of unit length. Since
these are the locations of the initial conditions that have not
left the cube int iterates, we have

N~ t !expS 2(
j51

U

hj
~1 !t D;exp~2t/t!.

Thus

H5S (
j51

U

hj
~1 !D 21/t. ~9!

To obtain the dimensionDu of the natural measure of the
unstable manifold, we wish to cover theN(t) slabs of dimen-
sions given by~7! by smallN-dimensional cubes. Let the
edge length of one of these cubes be

e i5exp~2h~ i11!
~2 ! t !. ~10!

The required number of cubes is

S 1
e i
D US e2h1

~2 !t

e i
D S e2h2

~2 !t

e i
D •••S e2hi

~2 !t

e i
DN~ t !.

Since e i→0 as t→1`, the box-counting definition of di-
mension, lime→0ln@#(e)#/ln(1/e), where #(e) is the number
of e cubes in the covering, yields an estimate for the dimen-
sion @13#,

Du~ i !5U1 i1@H2~h1
~2 !1h2

~2 !1•••1hi
~2 !!#/hi11

~2 ! .
~11!

Since the covering bye i cubes may not be optimal, Eq.~11!
is an upper bound on the dimension:Du<Du( i ). To obtain
the best upper bound, we minimizeDu( i ) over the indexi
~i.e., over the possible edge sizese i). Since the choices of
edge length given by~10! appear to be the most natural
choices, it is reasonable to conjecture that the minimum over
i gives the true value ofDu ~in the attractor case this as-
sumption yields the Kaplan-Yorke conjecture!. To find the
minimum of ~11!, consider the quantityDu( i11)2Du( i ),

Du~ i11!2Du~ i !5S 1

hi11
~2 ! 2

1

hi12
~2 ! D

3@~h1
~2 !1h2

~2 !1•••1hi11
~2 ! !2H#.

Since hi11
(2)<hi12

(2) @see ~6!#, the dimension increases~de-
creases! if the term in the square brackets is positive~nega-
tive!. Thus the minimum occurs at that value ofi ~denoted
I ) such that~see Fig. 1!

FIG. 1. Du( i ) versusi aroundi5I .
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h1
~2 !1•••1hI

~2 !1hI11
~2 ! >H>h1

~2 !1•••1hI
~2 ! ~12!

and the conjecture is

Du5Du~ I !. ~13!

Proceeding in the same way, we obtain the following result
for the information dimension of the stable manifold:

Ds~ j !5S1 j1@H2~h1
~1 !1h2

~1 !1•••1hj
~1 !!#/hj11

~1 ! ,
~14!

Ds5Ds~J!, ~15!

whereJ is defined by

h1
~1 !1•••1hJ

~1 !1hJ11
~1 ! >H>h1

~1 !1•••1hJ
~1 ! . ~16!

Since the invariant set lies in both its stable manifold and its
unstable manifold, the invariant set is the intersection of
these two manifolds. Assuming this intersection to be ge-
neric, we have that the dimension of the invariant set is@14#

D5Du1Ds2N5~ I1J!1SH2(
i51

I

hi
~2 !D ~hI11

~2 ! !21

1SH2(
j51

J

hj
~1 !D ~hJ11

~1 ! !21. ~17!

As a check, consider the case of the attractor. In this case
t5` and ~9! and ~16! yield J5U21 andDs5S1U5N.
~Formally we could also takeJ5U and get the same value
for Ds , thoughhU11

(1) is undefined.! Equation~17! then gives
D5Du , which with ~9! is just the Kaplan-Yorke formula.

Finally, we note that our definitions of the natural mea-
sures, Eqs.~3!–~5!, are not the only possible definitions@15#,
but ~3!–~5! appear to be the most natural choices and, per-
haps more importantly, they are the relevant measures for
our considerations in Sec. III and for the fluid tracer problem
mentioned in Sec. I.

III. FILTERING OF DATA FROM CHAOTIC SYSTEMS

Badii et al. @16# consider the effect of filtering on the
dimension measured from a time series generated by a dy-
namical system and show how to compute, for an ideal low-
pass or high-pass filter, the amount by which filtering in-
creases the dimension of the attractor reconstructed from the
time series. More recently@10,17# there has been interest as
well in the effect of acausal filters. In this section we present
an acausal filter for which we can show that the ‘‘attractor’’
reconstructed from the filtered signal is actually a chaotic
saddle for an associated dynamical system. We then apply
the formula from the preceding section to compute the di-
mension increase due to filtering.

Consider a time series$xn% and an associated filtered time
series

zn5xn1 (
k51

`

lc
kxn2k1 (

k51

`

la
kxn1k , ~18!

where 0<la ,lc,1. In general this filter is acausal; how-
ever, if la50 then we have a discrete version of the causal,

low-pass filter studied by Badiiet al. @16#. In that paper, it is
observed that the dynamics reconstructed from a delay-
coordinate embedding of the filtered signal$zn% is that of the
dynamical system that generated$xn% coupled to linear con-
tracting dynamics for the filtered coordinatez, given by the
recursion

zn115lczn1xn11 . ~19!

Thus an additional Lyapunov exponent2hc5 lnlc is intro-
duced to the dynamics by the causal filter and the informa-
tion dimensionD of the filtered attractor is given by the
Kaplan-Yorke formula, using the Lyapunov exponents of the
original system together with the new exponent2hc . Thus,
in general,d<D<d11, whered is the information dimen-
sion of the unfiltered attractor.

For the acausal filter~18! with la andlc nonzero, there is
no analog to~19!; that is, there is no equation relating
zn11, zn and any finite number of the$xk%. We can, however,
decompose$zn% into causal and acausal components$un%
and $vn%, each of which satisfies a recursion such as~19!.
Specifically, we writezn5un1vn , where

un5 (
k51

`

lc
kxn2k , ~20!

vn5 (
k50

`

la
kxn1k . ~21!

Then

un115lc~un1xn!, ~22!

vn115la
21~vn2xn!. ~23!

Thus the dynamics reconstructed from the filtered signal
$zn% ~e.g., by use of delay coordinates! are those of the origi-
nal system generating$xn% coupled with~22! and ~23!. The
u and v dynamics are linear and result in Lyapunov expo-
nents2hc5 lnlc andha5 lnla

21 . Though thev dynamics are
expanding, we know from~21! that$vn% is bounded and thus
the dynamics of the filtered system confines itself to the cha-
otic saddle, which is repelling in thev direction and attract-
ing in all other directions.

To apply the dimension formula~17! from Sec. II we
must also determine the entropyH of the filtered dynamics.
We show now thatH is the same as for the unfiltered dy-
namics; that is,H is equal to the sum of the positive
Lyapunov exponents of the unfiltered system. The filtered
system has an additional positive Lyapunov exponent
ha5 lnla

21 , but since thev dynamics~23! are linear with
expanding eigenvaluela

21 , trajectories are repelled from a
neighborhood of the chaotic saddle with exponential decay
time t51/ha ; thusha21/t50 and thev dynamics have no
net effect on the entropy of the system.

We thus make the following conclusions about the dimen-
sion increase due to the filter~18!. BecauseH is unchanged
by the filter, the effects of the additional Lyapunov expo-
nents2hc and ha on the dimension formula~17! can be
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treated separately. That is, we can write the dimensionD of
the chaotic saddle reconstructed from the filtered time series
as

D5d1dc1da , ~24!

whered is the dimension of the unfiltered attractor,dc is the
increase in the right side of~17! due to2hc , andda is the
increase due toha .

To describe the dimension increasedc due to2hc , let I
be defined as in~12! and letd5H2(h1

(2)1•••1hI
(2)); then

0<d<hI11
(2) and the portion of the dimension formula~17!

for the unfiltered attractor due to the stable Lyapunov expo-
nents is

I1
d

hI11
~2 ! . ~25!

If hc>hI11
(2) , thenhc has no effect on the dimension formula

and dc50. If hI11
(2) >hc>max(hI

(2) ,d), then hc simply re-
places hI11

(2) in the dimension formula and thus
dc5d/hc2d/hI11

(2) . If hI
(2)>hc>d ~this case is empty if

d.hI
(2)), then

h1
~2 !1•••1hI21

~2 ! 1hc<H<h1
~2 !1•••1hI21

~2 ! 1hc1hI
~2 ! .
~26!

It does not matter whetherhc is greater or smaller than
hI21
(2) ; either way ~26! boundsH between the sum of the
magnitudes of theI smallest stable Lyapunov exponents of
the filtered system and the sum of theI11 smallest of these
magnitudes.~Similar considerations apply to the cases dis-
cussed below.! Thus

dc5
H2~h1

~2 !1•••1hI21
~2 ! 1hc!

hI
~2 ! 2

d

hI11
~2 !

5
d1hI

~2 !2hc
hI

~2 ! 2
d

hI11
~2 !

512
hc2d

hI
~2 ! 2

d

hI11
~2 ! . ~27!

Finally, if hc<d, then

h1
~2 !1•••1hI

~2 !1hc<H<h1
~2 !1•••1hI

~2 !1hc1hI11
~2 !

~28!

and thus

dc511
H2~h1

~2 !1•••1hI
~2 !1hc!

hI11
~2 ! 2

d

hI11
~2 ! 512

hc
hI11

~2 ! .

~29!

We summarize these cases in Table I.
The dimension increaseda due toha is much simpler to

describe becauseH5h1
(1)1•••1hU

(1) and the portion of the
dimension formula~17! due to the unstable Lyapunov expo-
nents is justJ5U. If ha>hU

(1) then it has no effect on the
dimension formula andda50. If ha<hU

(1) then

h1
~1 !1•••1hU21

~1 ! 1ha<H<h1
~1 !1•••1hU21

~1 ! 1ha1hU
~1 !

~30!

and thus

da511
H2~h1

~1 !1•••1hU21
~1 ! 1ha!

hU
~1 !

5
hU

~1 !2ha
hU

~1 ! 512
ha
hU

~1 ! . ~31!

Again, we summarize the cases in a table~Table II!. This
result is illustrated in Fig. 2, which shows the information
dimensionD as a function ofha , assuming thathc and the
system generating thex dynamics are held fixed.
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FIG. 2. D versusha .

TABLE I. Dimension increasedc as a function of the causal
Lyapunov exponenthc .

hc dc

hc>hI11
(2) 0

hI11
(2)>hc>max(hI

(2) ,d)
d

hc
2

d

hI11
~2!

hI
(2)>hc>d 12

hc2d

hI
~2! 2

d

hI11
~2!

hc<d 12
hc
hI11

~2!

TABLE II. Dimension increaseda as a function of the acausal
Lyapunov exponentha .

ha da

ha>hU
(1) 0

ha<hU
(1) 12

ha
hU

~1!
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123~1994!; Á. Péntek, Z. Toroczkai, T. Te´l, C. Grebogi, and J.
A. Yorke, Phys. Rev. E51, 4076~1995!.

@12# The arguments in this section generalize those of Refs.@8,9#.
See also E. Ott,Chaos in Dynamical Systems~Cambridge Uni-
versity Press, Cambridge, 1993!, pp. 176–179.

@13# This argument~as in the Kaplan-Yorke argument! might su-
perficially appear to yield the box-counting dimension rather
than the information dimension. We note, however, that the
information dimension may be viewed as the box-counting di-
mension of the minimal set covering most of the measure~e.g.,
see@1b#!. Furthermore, the expansions and contractions speci-
fied by the Lyapunov exponents are only valid fortypical or-
bits ~i.e., for those orbits on the attractor that have most of the
measure!.

@14# Equation~17! can also be obtained from the partial dimension
treatment of Ref.@5# by maximizingD over the possible val-
ues of the partial dimensions.

@15# E. Ott, T. Sauer, and J. A. Yorke, Phys. Rev. A39, 4212
~1989! ~see in particular the Appendix!.

@16# R. Badii, G. Broggi, B. Derighetti, M. Ravani, S. Ciliberto, A.
Politi, and M. A. Rubio, Phys. Rev. Lett.60, 979 ~1988!.

@17# L. M. Pecora and T. L. Carroll, CHAOS6, 432 ~1996!.

54 4823FRACTAL DIMENSIONS OF CHAOTIC SADDLES OF . . .


